

Self-organized Collaboration of Distributed IDS Sensors

Karel Bartos¹ and Martin Rehak^{1,2} and Michal Svoboda²

¹ Faculty of Electrical Engineering Czech Technical University in Prague

² Cognitive Security, s.r.o., Prague

DIMVA 2012

July 27 2012

Network Security – Motivation

Advanced Persistent Threats

- Strategically motivated
- Targeted (single/few targets)
- Threats
 - Sophisticated industrial espionage
 - Organized crime credit card fraud, banking attacks, spam

• Challenges:

- High traffic speeds
- High number of increasingly sophisticated, evasive attacks

All Industry Sectors at Risk

							-			Ń		
U.S. Federal Government	6	Construction/ Heavy	3	Electronics Industry	3	Defense Contractor	13	Real Estate Accounting	2	International Sports	5	
U.S. State Government	5	Industry Steel	1	Computer Security Information	2			Industry	2	Economics/ Trade	2	
	3	Industry						Agriculture	1	Think Tanks	2	
U.S. County Government	1	Energy	1	Technology	2			Insurance	1		4	
Canadian Government	2	Solar Power	1	Satellite Communica- tions	2		"every company in every conceivable industry with					
South Korean Government	1	U.S. 1 Government Contractor		News Media	2	significant size & valuable intellectual property & Political Non-profit						
Vietnam Government	1	United Nations	1	Information Services	1	trade secrets has been compromised (or will be					1	
Taiwan Government	1	Indian	1	Communica- tions	1	shortly)" - McAfee				Non-profit		
	- te	Government		McAfee - Reve	ealed	da Operation Sh	ady RA	ΑT				

Our Goal

• Use a Collaboration of Multiple Heterogeneous Detectors to create Network Security Awareness

Intrusion Detection

• Intrusion Detection Systems

- Deployed on key points of the network infrastructures
- Detects malicious network/host behavior
- Approaches
 - Host based vs. Network based
 - Anomaly detection vs. Signature matching
 - Multi-algorithm systems
- **Problem:** Stand-alone IDS is not very effective on
 - Cooperative attacks
 - Large variability of malicious behavior

Current Solution? Alert Correlation

- IDEA: Data fusion of results from more detectors
- GOAL: Create global full scale conclusions
 - Fusion of raw input data or low-level alerts
 - Increase the level of abstraction
 - Reveal more complex attacks scenarios
 - Find prerequisites and consequences

Alert Correlation

• Architectures

Example of Current Architecture

- All detectors work in a stand-alone architecture
- More sophisticated detectors can reconfigure based on local observations

Alert Correlation

- Collects results from more detectors to provide better overall results
- WEAKNESSES:
- It does not provide any feedback to the detectors
 - Detectors are not aware of the performance of other detectors
 - Detectors require initial (manual) configuration/tuning
- It does not improve the performance of detectors

Our Approach

- All detectors work in a fully distributed and collaborative architecture
- More sophisticated detectors can improve based on observations from other detectors

Assumptions and Requirements

Communication

- All-to-All, fully distributed

Reconfiguration

 At least some detectors are able to change their internal states according to the observations

• Security

Detectors do not provide information about their internal states

Strategic Deployment

 Detectors are deployed in various parts of the monitored network; network traffic should overlap

- Large variability of network attacks and threats
 No single detector is able to detect all intrusions
- To detect more intrusions, we need more detectors
 More detection methods, various locations
- Many detectors report a lot of same intrusions
 - They make similar conclusions and mistakes

- Large variability of network attacks and threats
 No single detector is able to detect all intrusions
- To detect more intrusions, we need more detectors
 More detection methods, various locations
- Many detectors report a lot of same intrusions
 - They make similar conclusions and mistakes

Q: Is it a good thing?

- Large variability of network attacks and threats
 No single detector is able to detect all intrusions
- To detect more intrusions, we need more detectors
 More detection methods, various locations
- Many detectors report a lot of same intrusions
 - They make similar conclusions and mistakes

Q: Is it a good thing?

- For traditional alert correlation: **YES** (FP reduction)

- Large variability of network attacks and threats
- To detect more intrusions, we need more detectors
- Many detectors report a lot of same intrusions
 - Q: Is it a good thing?
 - For traditional alert correlation: YES (FP reduction)
 Q: Why the detectors generate a lot of FP?

- Large variability of network attacks and threats
- To detect more intrusions, we need more detectors
- Many detectors report a lot of same intrusions

Q: Is it a good thing?

For traditional alert correlation: YES (FP reduction)
 Q: Why the detectors generate a lot of FP?
 A: Because they: - want to be universal
 - want to generate a lot of TP

- Large variability of network attacks and threats
- To detect more intrusions, we need more detectors
- Many detectors report a lot of same intrusions
 - Q: Is it a good thing?
 - For traditional alert correlation: **YES** (FP reduction)
 - For our approach: **NO** (specialization)

Specialization

- IDEA: Detectors communicate in order to be special
- Each detector wants: (specialization allows)
 - to detect unique intrusions \rightarrow *essential*
 - to minimize the amount of FP \rightarrow *effective*
- Each detector does not want: (specialization prevents)
 - to waste resources on already detected intrusions
- Specialization in collaboration
 - Maximizes the overall detection potential of the system

Proposed Collaboration Model

Set of feedback functions

- Computes the specialization of each detector
- f: E_local × E_remote $\rightarrow \mathbf{R}$
- Set of configuration states
 - Defines the behavior of each detector
- Solution Concept / Algorithm / Strategies
 - Feedback reconfiguration mapping
 - Suitable for dynamic network environments

- 10 hours of network traffic (NetFlow)
- Including samples of malware behavior

- 10 hours of network traffic (NetFlow)
- Including samples of malware behavior

- 10 hours of network traffic (NetFlow)
- Including samples of malware behavior

- 10 hours of network traffic (NetFlow)
- Including samples of malware behavior

Experimental Evaluation - Malware

Experimental Evaluation - Model

- Feedback function is defined as
 - Uniqueness of generated events
 - Number of alerts that I detected and others did not
- Set of configuration states
 - Each detector consists of several detection methods
 - Several opinions have to be aggregated = parameter
 - State = aggregation function within each IDS

Experimental Evaluation - Strategies

• Stand-alone

– No feedback, No fusion

- Fusion only
 - Detectors are connected and exchange their results
- Fusion + Feedback
 - Distributed feedback, Event fusion
 - Encourages specialization

Experimental Evaluation - Strategies

• Stand-alone

– No feedback, No fusion

- Fusion only
 - Detectors are connected and exchange their results
- Fusion + Feedback
 - Distributed feedback, Event fusion
 - Encourages specialization

Experimental Evaluation - Strategies

• Stand-alone

– No feedback, No fusion

- Fusion only
 - Detectors are connected and exchange their results
- Fusion + Feedback
 - Distributed feedback, Event fusion
 - Encourages specialization

FIRE Epsilon-greedy Adaptation

• Model consists of configuration states and their uniqueness values (weighted 5 past values)

• Algorithm

- Detectors exchange events
- Compute uniqueness of last used configuration
- Update last 5 uniqueness values for last used configuration
- With probability p:
 - $p \ge \epsilon$ select most unique configuration
 - p < ε select random configuration

Experimental Evaluation - Results

Subnet location – # of detected malware samples

Experimental Evaluation - Results

• Subnet location – relative false positive rate

Experimental Evaluation - Results

Backbone location – # of detected malware samples

Backbone location – relative false positive rate

Conclusion

- Distributed collaboration of heterogeneous detectors
- Extends overall detection potential of the system by mutual specialization of the detectors

• Future Work:

- Other strategy selection techniques
- More extensive experimental evaluation

Thank You

Questions?

Thank You

Questions?

Local Self-adaptation

- Unlabeled background input data
- Insertion of small set of challenges
 - Legitimate
 - Malicious
- Response evaluation
- Problems: Noise, challenge nonuniformity, distribution, system compromise

Challenge Insertion Control

